

ES Journal of Microbiology

Destruction of Monocytes/Macrophages by Corona Virus Might Explain Peri-Alveolar and Systemic Micro-Thrombi

Editorial

Thomas Stief*

Institute of Laboratory Medicine and Pathobiochemistry, University Hospital Giessen & Marburg, Germany

Received: May 14, 2020; Accepted: May 18, 2020; Published: May 20, 2020

*Corresponding author: Thomas Stief, Central Laboratory, University Hospital, D-35043 Marburg, Germany

Copyright: © 2020 Thomas Stief. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

An important pathophysiologic complication of *Corona virus* infection is the generation of micro-thrombi in the alveolar structure (radiologically seen as ground glass opacities) possibly accompanied by systemic micro-thrombi in many organs [1-3], the latter being typical for disseminated intravascular coagulation (DIC).

Monocytes/macrophages (MØ) contain high concentrations of the strongest trigger of blood coagulation, that is tissue factor (TF). Therefore, destroyed MØ trigger extrinsic F7a-driven thrombin generation via TF and intrinsic F12a/kallikrein driven thrombin generation via free DNA/phospholipids [4], kallikrein causing capillary leakage. The *Corona virus* seems to infect and destroy alveolar macrophages or blood monocytes [5-7].

Therefore, activation of blood coagulation should be monitored via the biomarkers D-Dimer and systemically circulating amidolytic thrombin activity [8]. Using low molecular weight heparin in therapeutic dosage, eventually combined with infusion of a high quality antithrombin drug, elevated systemic thrombin activities should be lowered to less than 120% of normal. Physiological concentrations of generators of non radical singlet oxygen such as taurine-chloramine might be beneficial [9-20].

Acknowledgments

No conflict of interests.

References

- Zhou F et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020; 395: 1054-1062.
- Yao XH et al. A pathological report of three COVID-19 cases by Minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi 2020.
- Thevarajan I et al. Breadth of concomitant immune response prior to patient recovery: a case report of non-severe COVID-19.Nat Med. 2020; 26: 453-455.
- Stief TW. Thrombin generation by exposure of blood to endotoxin a simple model to study DIC. ClinAppl Thrombosis/Hemostasis 2006; 12: 137-161.
- Bao L et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020.
- Raj K et al. Coronavirus as silent killer: recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virusdisease 2020.
- 7. Klepper A, Branch AD. Macrophages and the viral dissemination super highway. EC Microbiol 2015: 2: 328-336.
- 8. Stief TW. Specific determination of plasmatic thrombin activity. ClinAppl Thrombosis/Hemostasis. 2006; 12: 324-329.
- 9. Stief TW, Fareed J. The antithrombotic factor singlet oxygen/light ($^1O_2/hv$). ClinAppl Thrombosis/Hemostasis. 2000; 6: 22-30.
- Stief TW. The blood fibrinolysis / deep sea analogy: a hypothesis on the cell signals singlet oxygen / photons as natural antithrombotics. Thromb Res. 2000; 99: 1-20.
- 11. Stief TW. The physiology and pharmacology of singlet oxygen. Med Hypoth. 2003; 60: 567-572.
- 12. Stief TW. Regulation of hemostasis by singlet-oxygen ($^{1}\Delta O_{2}$). CurrVascPharmacol 2004; 2: 357-362.
- 13. Stief T. Micro-thrombi stimulate blood ROS generation. Hemostasis Laboratory. 2013; 6: 315-25.

ES Journal of Microbiology

- 14. Stief TW, Slenczka W, Renz H, Klenk HD. Singlet oxygen (¹0₂) generating chloramines at concentrations that are tolerable for normal hemostasis function inactivate the lipid enveloped vesicular stomatitis virus in human blood. In: 3rd Symposium on the Biology of Endothelial Cells; Pathophysiology of the Endothelium: Vascular and Infectious Diseases, May 24-26, 2001, Giessen, Germany, Abstr. D10
- 15. Stief TW. Hemostasis tolerable singlet oxygen a perspective in AIDS therapy. Hemostasis Laboratory. 2008; 1: 21-40.
- 16. Stief TW. Singlet oxygen oxidizable lipids in the HIV membrane, new targets for AIDS therapy ?Med Hypoth. 2003; 60: 575-577.
- 17. Stief TW. Singlet oxygen and thrombin generation: 0.5-1 mM chloramine as anti-viral therapy. Hemostasis Laboratory 2010; 3: 311.324
- 18. Stief T. LMWH stimulates blood ROS generation. Hemostasis Laboratory. 2013; 6: 175-184.
- 19. Stief T. Granulocyte colony stimulating factor multiplies normal blood ROS generation at less than 1 μ g/l. Optics and Photonics Journal (OPJ; Biophotonics) 2018; 8:1-10.
- 20. Busch A, Stief T. Taurine strongly enhances the ROS generation of blood neutrophils. Hemostasis Laboratory 2014; 7: 197-208.