

ES Journal of Microbiology

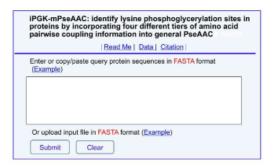
How the artificial intelligence tool iPGK-PseAAC is working in predicting lysine phosphoglycerylation sites in proteins

Short Communication

Kuo-Chen Chou*

Gordon Life Science Institute, Massachusetts, USA

Received: Mar 06, 2020; Accepted: Mar 18, 2020; Published: Mar 20, 2020


*Corresponding author: Kuo-Chen Chou, Gordon Life Science Institute, Boston, Massachusetts 02478, United States of America

Copyright: © 2020 Kuo-Chen Chou. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In 2017 a very powerful AI (artificial intelligence) tool has been established for predicting lysine phosphoglycerylation sites in proteins, one of the most important post modifications in proteins [1].

To see how the web-server is working, please do the following.

Step 1: Opening the web-server at http://app.aporc. org/iPGK-PseAAC/, you will see the top page of iPGK-PseAAC on your computer screen, as shown in Figure 1. Click on the Read Me button to see a brief introduction about this predictor.

Figure 1: A semi-screenshot for the top-page of the iPGK-PseAAC web-server at http://app.aporc.org/iPGK-PseAAC/. (Adapted from [1] with permission).

Step 2: Either type or copy/paste your query protein sequences into the inputbox at the center of Figure 1. The input sequences should be in the FASTA format. For the examples of sequences in FASTA format, click the Example button right above the input box.

- **Step 3**: Click on the Submit button to see the predicted result. For example, if you use the Sequences in the Example window as the input, after a few seconds, you will see the corresponding predicted results, which is fully consistent with experiment observations.
- **Step 4:** Click the Data button to download the benchmark dataset used in this study.
- **Step 5:** Click the Citation button to find the relevant papers that document the detailed development and algorithm for **iPGK-PseAAC**.

It is anticipated that the Web-Server will be very useful because the vast majority of biological scientists can easily get their desired results without the need to go through the complicated equations in [1] that were presented just for the integrity in developing the predictor.

Also, note that the web-server predictor has been developed by strictly observing the guidelines of "Chou's 5-steps rule" and hence have the following notable merits (see, e.g., [2-4] and three comprehensive review papers [5-7]): (1) crystal clear in logic development, (2) completely transparent in operation, (3) easily to repeat the reported results by other investigators, (4) with high potential in stimulating other sequence-analyzing methods, and (5) very convenient to be used by the majority of experimental scientists.

It has not escaped our notice that during the development of iDNA6mA-PseKNC web-server, the approach of general pseudo amino acid components [8] or PseAAC [9] had been utilized and hence its accuracy would be much higher than its counterparts, as concurred by many investigators (see, e.g., [10-12]).

For the marvelous and awesome roles of the "5-steps rule" in driving proteome, genome analyses and drug development, see a series of recent papers [13-34] where the rule and its wide applications have been very impressively presented from various aspects or at different angles.

References

- L.M. Liu, Y. Xu, K.C. Chou, iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC, Med Chem, 13 (2017) 552-559.
- O. Barukab, Y.D. Khan, S.A. Khan, K.C. Chou, iSulfoTyr-PseAAC: Identify tyrosine sulfation sites by incorporating statistical moments via Chou's 5-steps rule and pseudo components Current Genomics.
- Wiktorowicz, A. Wit, A. Dziewierz, L. Rzeszutko, D. Dudek, P. Kleczynski, Calcium Pattern Assessment in Patients with Severe Aortic Stenosis Via the Chou's 5-Steps Rule, Current Pharmaceutical Design.
- S. Vishnoi, P. Garg, P. Arora, Physicochemical n-Grams Tool: A tool for protein physicochemical descriptor generation via Chou's 5-step rule, Chem Biol Drug Des, 95 (2020) 79-86.
- K.C. Chou, Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review, 5-steps rule), J. Theor. Biol., 273 (2011) 236-247.
- K.C. Chou, Advance in predicting subcellular localization of multilabel proteins and its implication for developing multi-target drugs, Current Medicinal Chemistry.
- K.C. Chou, Impacts of pseudo amino acid components and 5-steps rule to proteomics and proteome analysis, Current Topics in Medicinak Chemistry (CTMC) (Special Issue ed. G.P Zhou).
- K.C. Chou, Prediction of protein cellular attributes using pseudo amino acid composition, PROTEINS: Structure, Function, and Genetics (Erratum: ibid., 2001, Vol.44, 60), 43 (2001) 246-255.
- K.C. Chou, Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21 (2005) 10-19
- K.K. Kandaswamy, G. Pugalenthi, S. Moller, E. Hartmann, K.U. Kalies, P.N. Suganthan, T. Martinetz, Prediction of Apoptosis Protein Locations with Genetic Algorithms and Support Vector Machines Through a New Mode of Pseudo Amino Acid Composition, Protein and Peptide Letters, 17 (2010) 1473-1479.
- H. Mohabatkar, Prediction of cyclin proteins using Chou's pseudo amino acid composition, Protein & Peptide Letters, 17 (2010) 1207-1214.
- L. Nanni, S. Brahnam, A. Lumini, High performance set of PseAAC and sequence based descriptors for protein classification, J. Theor. Biol., 266 (2010) 1-10.
- K.C. Chou, The cradle of Gordon Life Science Institute and its development and driving force, Int J Biol Genetics, 1 (2019) 1-28.
- K.C. Chou, Showcase to illustrate how the web-server iDNA6mA-PseKNC is working, Journal of Pathology Research Reviews & Reports, 1 (2019) 1-15.
- K.C. Chou, The pLoc_bal-mPlant is a Powerful Artificial Intelligence Tool for Predicting the Subcellular Localization of Plant Proteins Purely based on their Sequence Information, Int J

- Nutr Sci., 4 (2019) 1-4.
- K.C. Chou, X. Cheng, X. Xiao, pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasibalancing training dataset, Med Chem, 15 (2019) 472-485.
- 17. K.C. Chou, Showcase to illustrate how the web-server iNitro-Tyr is working, Glo J of Com Sci and Infor Tec. , 2 (2019) 1-16.
- 18. K.C. Chou, Gordon Life Science Institute: Its philosophy, achievements, and perspective, Annals of Cancer Therapy and Pharmacology 2(2019) 001-026.
- K.C. Chou, Showcase to Illustrate how the webserver pLoc_balmEuk Is working, Biomed J Sci & Tech Res.
- K.C. Chou, The pLoc_bal-mGneg Predictor is a Powerful Web-Server for Identifying the Subcellular Localization of Gram-Negative Bacterial Proteins based on their Sequences Information Alone, ijSci, 9 (2020) 27-34.
- K.C. Chou, How the artificial intelligence tool iRNA-2methyl is working for RNA 2'-Omethylation sites, Journal of Medical Care Research and Review, 3 (2020) 348-366.
- K.-C. Chou, Showcase to illustrate how the web-server iKcr-PseEns is working, Journal of Medical Care Research and Review, 3 (2020) 331-347.
- 23. K.C. Chou, The pLoc_bal-mVirus is a powerful artificial intelligence tool for predicting the subcellular localization of virus proteins according to their sequence information alone, J Gent & Genome, 4 (2020).
- K.C. Chou, How the artificial intelligence tool iSNO-PseAAC is working in predicting the cysteine S-nitrosylation sites in proteins, J Stem Cell Res Med, 4 (2019) 1-9.
- K.C. Chou, Showcase to illustrate how the web-server iRNA-Methyl is working, J Mol Genet, 3 (2020) 1-7.
- K.C. Chou, How the Artificial Intelligence Tool iRNA-PseU is Working in Predicting the RNA Pseudouridine Sites, Biomed J Sci & Tech Res
- K.C. Chou, Showcase to illustrate how the web-server iSNO-AAPair is working, J Gent & Genome, 4 (2020).
- K.C. Chou, The pLoc_bal-mHum is a Powerful Web-Serve for Predicting the Subcellular Localization of Human Proteins Purely Based on Their Sequence Information, Adv Bioeng Biomed Sci Res, 3 (2020) 1-5.
- K.C. Chou, Showcase to Illustrate How the Web-server iPTMmLys is working, Infotext Journal of Infectious Diseases and Therapy [IJID], 1 (2020) 1-16.
- K.C. Chou, The pLoc_bal-mGpos is a powerful artificial intelligence tool for predicting the subcellular localization of Grampositive bacterial proteins according to their sequence information alone, Glo J of Com Sci and Infor Tec, 2 (2020) 01-13.
- 31. K.C. Chou, Showcase to illustrate how the web-server iPreny-PseAAC is working, Glo J of Com Sci and Infor Tec., 2 (2020)
- K.C. Chou, Some illuminating remarks on molecular genetics and genomics as well as drug development, Molecular Genetics and Genomics, 295 (2020) 261-274.
- K.C. Chou, The Problem of Elsevier Series Journals Online Submission by Using Artificial Intelligence, Natural Science, 12 (2020) 37-38.
- K.C. Chou, The Most Important Ethical Concerns in Science, Natural Science, 12 (2020) 35-36.